34 research outputs found

    INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

    Get PDF
    [EN] This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either locally or through enhanced interfaces. The middleware developed allows to federate hybrid resources, to easily write, port and run scientific applications to the cloud. In particular, we have extended existing PaaS (Platform as a Service) solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, and Helix Nebula, to integrate their existing services and make them available through AAI services compliant with GEANT interfederation policies, thus guaranteeing transparency and trust in the provisioning of such services. Our middleware facilitates the execution of applications using containers on Cloud and Grid based infrastructures, as well as on HPC clusters. Our developments are freely downloadable as open source components, and are already being integrated into many scientific applications.INDIGO-Datacloud has been funded by the European Commision H2020 research and innovation program under grant agreement RIA 653549.Salomoni, D.; Campos, I.; Gaido, L.; Marco, J.; Solagna, P.; Gomes, J.; Matyska, L.... (2018). INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures. Journal of Grid Computing. 16(3):381-408. https://doi.org/10.1007/s10723-018-9453-3S381408163García, A.L., Castillo, E.F.-d., Puel, M.: Identity federation with VOMS in cloud infrastructures. In: 2013 IEEE 5Th International Conference on Cloud Computing Technology and Science, pp 42–48 (2013)Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville, D.: Adding federated identity management to OpenStack. Journal of Grid Computing 12(1), 3–27 (2014)Craig, A.L.: A design space review for general federation management using keystone. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp 720–725. IEEE Computer Society (2014)Pustchi, N., Krishnan, R., Sandhu, R.: Authorization federation in iaas multi cloud. In: Proceedings of the 3rd International Workshop on Security in Cloud Computing, pp 63–71. ACM (2015)Lee, C.A., Desai, N., Brethorst, A.: A Keystone-Based Virtual Organization Management System. In: 2014 IEEE 6Th International Conference On Cloud Computing Technology and Science (Cloudcom), pp 727–730. IEEE (2014)Castillo, E.F.-d., Scardaci, D., García, A.L.: The EGI Federated Cloud e-Infrastructure. Procedia Computer Science 68, 196–205 (2015)AARC project: AARC Blueprint Architecture, see https://aarc-project.eu/architecture . Technical report (2016)Oesterle, F., Ostermann, S., Prodan, R., Mayr, G.J.: Experiences with distributed computing for meteorological applications: grid computing and cloud computing. Geosci. Model Dev. 8(7), 2067–2078 (2015)Plasencia, I.C., Castillo, E.F.-d., Heinemeyer, S., García, A.L., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. The European Physical Journal C 73(4), 2375 (2013)Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review 49(1), 71–79 (2015)Docker: http://www.docker.com (2013)Gomes, J., Campos, I., Bagnaschi, E., David, M., Alves, L., Martins, J., Pina, J., Alvaro, L.-G., Orviz, P.: Enabling rootless linux containers in multi-user environments: the udocker tool. Computing Physics Communications. https://doi.org/10.1016/j.cpc.2018.05.021 (2018)Zhang, Z., Chuan, W., Cheung, D.W.L.: A survey on cloud interoperability taxonomies, standards, and practice. SIGMETRICS perform. Eval. Rev. 40(4), 13–22 (2013)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments. Journal of Grid Computing 12(4), 559–592 (2014)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Technical report, Open Grid Forum (2011)(Ca Technologies) Lipton, P., (Ibm) Moser, S., (Vnomic) Palma, D., (Ibm) Spatzier, T.: Topology and Orchestration Specification for Cloud Applications. Technical report, OASIS Standard (2013)Teckelmann, R., Reich, C., Sulistio, A.: Mapping of cloud standards to the taxonomy of interoperability in IaaS. In: Proceedings - 2011 3rd IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2011, pp 522–526 (2011)García, A.L., Castillo, E.F.-d., Fernández, P.O.: Standards for enabling heterogeneous IaaS cloud federations. Computer Standards & Interfaces 47, 19–23 (2016)Caballer, M., Zala, S., García, A.L., Montó, G., Fernández, P.O., Velten, M.: Orchestrating complex application architectures in heterogeneous clouds. Journal of Grid Computing 16 (1), 3–18 (2018)Hardt, M., Jejkal, T., Plasencia, I.C., Castillo, E.F.-d., Jackson, A., Weiland, M., Palak, B., Plociennik, M., Nielsson, D.: Transparent Access to Scientific and Commercial Clouds from the Kepler Workflow Engine. Computing and Informatics 31(1), 119 (2012)Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow Scheduling in Cloud Computing a Survey. In: IEEE 18Th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), 2014, Vol. 71, pp. 372–378. Springer, New York (2014)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017)Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level Dynamic Workflow Orchestration in the INDIGO DataCloud for Large-scale, Climate Change Data Analytics Experiments. Procedia Computer Science 80, 722–733 (2016)Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Multicloud deployment of computing clusters for loosely coupled mtc applications. IEEE transactions on parallel and distributed systems 22(6), 924–930 (2011)Katsaros, G., Menzel, M., Lenk, A.: Cloud Service Orchestration with TOSCA, Chef and Openstack. In: Ic2e (2014)Garcia, A.L., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Dal Pra, S., Salomoni, D., Donvito, G.: Improved Cloud resource allocation: how INDIGO-DataCloud is overcoming the current limitations in Cloud schedulers. J. Phys. Conf. Ser. 898(9), 92010 (2017)Singh, S., Chana, I.: A survey on resource scheduling in cloud computing issues and challenges. Journal of Grid Computing, pp. 1–48 (2016)García, A.L., Castillo, E.F.-d., Fernández, P.O., Plasencia, I.C., de Lucas, J.M.: Resource provisioning in Science Clouds: Requirements and challenges. Software: Practice and Experience 48(3), 486–498 (2018)Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting cloud-enabled systems: a systematic survey of challenges and solutions. Software - Practice and Experience 47(4), 599–644 (2017)Somasundaram, T.S., Govindarajan, K.: CLOUDRB A Framework for scheduling and managing High-Performance Computing (HPC) applications in science cloud. Futur. Gener. Comput. Syst. 34, 47–65 (2014)Sotomayor, B., Keahey, K., Foster, I.: Overhead Matters: A Model for Virtual Resource Management. In: Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing SE - VTDC ’06, p 5. IEEE Computer Society, Washington (2006)SS, S.S., Shyam, G.K., Shyam, G.K.: Resource management for Infrastructure as a Service (IaaS) in cloud computing SS Manvi A survey. J. Netw. Comput. Appl. 41, 424–440 (2014)INDIGO-DataCloud consortium: Initial requirements from research communities - d2.1, see https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 . Technical report (2015)Europen open science cloud: https://ec.europa.eu/research/openscience (2015)Proot: https://proot-me.github.io/ (2014)Runc: https://github.com/opencontainers/runc (2016)Fakechroot: https://github.com/dex4er/fakechroot (2015)Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures Future Generation Computer Systems (2018)de Vries, K.J.: Global fits of supersymmetric models after LHC run 1. Phd thesis Imperial College London (2015)Openstack: https://www.openstack.org/ (2015)See http://argus-documentation.readthedocs.io/en/stable/argus_introduction.html (2017)See https://en.wikipedia.org/wiki/xacml (2013)See http://www.simplecloud.info (2014)Opennebula: http://opennebula.org/ (2018)Redhat openshift: http://www.opencityplatform.eu (2011)The cloud foundry foundation: https://www.cloudfoundry.org/ (2015)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015)See http://www.infoq.com/articles/scaling-docker-with-kubernetes http://www.infoq.com/articles/scaling-docker-with-kubernetes (2014)Prisma project: http://www.ponsmartcities-prisma.it/ (2010)Opencitiy platform: http://www.opencityplatform.eu (2014)Onedata: https://onedata.org/ (2018)Dynafed: http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project (2011)Fts3: https://svnweb.cern.ch/trac/fts3 (2011)Fernández, P.O., García, A.L., Duma, D.C., Donvito, G., David, M., Gomes, J.: A set of common software quality assurance baseline criteria for research projects, see http://hdl.handle.net/10261/160086 . Technical reportHttermann, M.: Devops for developers Apress (2012)EOSC-Hub: ”Integrating and managing services for the European Open Science Cloud” Funded by H2020 research and innovation pr ogramme under grant agreement No. 777536. See http://eosc-hub.eu (2018)Apache License: author = https://www.apache.org/licenses/LICENSE-2.0 (2004)INDIGO Package Repo: http://repo.indigo-datacloud.eu/ (2017)INDIGO DockerHub: https://hub.docker.com/u/indigodatacloud/ https://hub.docker.com/u/indigodatacloud/ (2015)Indigo gitbook: https://indigo-dc.gitbooks.io/indigo-datacloud-releases https://indigo-dc.gitbooks.io/indigo-datacloud-releases (2017)Van Zundert, G.C., Bonvin, A.M.: Disvis: quantifying and visualizing the accessible interaction space of distance restrained biomolecular complexes. Bioinformatics 31(19), 3222–3224 (2015)Van Zundert, G.C., Bonvin, A.M.: Fast and sensitive rigid–body fitting into cryo–em density maps with powerfit. AIMS Biophys. 2(0273), 73–87 (2015

    Compulsive Internet Use Among Adolescents: Bidirectional Parent–Child Relationships

    Get PDF
    Although parents experience growing concerns about their children’s excessive internet use, little is known about the role parents can play to prevent their children from developing Compulsive Internet Use (CIU). The present study addresses associations between internet-specific parenting practices and CIU among adolescents, as well as the bidirectionality of these associations. Two studies were conducted: a cross-sectional study using a representative sample of 4,483 Dutch students and a longitudinal study using a self-selected sample of 510 Dutch adolescents. Results suggest that qualitatively good communication regarding internet use is a promising tool for parents to prevent their teenage children from developing CIU. Besides, parental reactions to excessive internet use and parental rules regarding the content of internet use may help prevent CIU. Strict rules about time of internet use, however, may promote compulsive tendencies. Finally, one opposite link was found whereby CIU predicted a decrease in frequency of parental communication regarding internet use

    Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies

    No full text
    Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1.auxin.IAA7 and TIR1.auxin.IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron's vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states. Auxin-mediated recruitment of AUX/IAAs by the F-box protein TIR1 prompts rapid AUX/IAA ubiquitylation and degradation. By resolving auxin receptor topology, the authors show that intrinsically disordered regions near the degrons of two Aux/IAA proteins reinforce complex assembly and position Aux/IAAs for ubiquitylation

    M3: an integrative framework for structure determination of molecular machines

    No full text
    We present a broadly applicable, user-friendly protocol that incorporates sparse and hybrid experimental data to calculate quasi-atomic-resolution structures of molecular machines. The protocol uses the HADDOCK framework, accounts for extensive structural rearrangements both at the domain and atomic levels and accepts input from all structural and biochemical experiments whose data can be translated into interatomic distances and/or molecular shapes

    Distinguishing crystallographic from biological interfaces in protein complexes: role of intermolecular contacts and energetics for classification

    No full text
    BACKGROUND: Study of macromolecular assemblies is fundamental to understand functions in cells. X-ray crystallography is the most common technique to solve their 3D structure at atomic resolution. In a crystal, however, both biologically-relevant interfaces and non-specific interfaces resulting from crystallographic packing are observed. Due to the complexity of the biological assemblies currently tackled, classifying those interfaces, i.e. distinguishing biological from crystal lattice interfaces, is not trivial and often prone to errors. In this context, analyzing the physico-chemical characteristics of biological/crystal interfaces can help researchers identify possible features that distinguish them and gain a better understanding of the systems. RESULTS: In this work, we are providing new insights into the differences between biological and crystallographic complexes by focusing on "pair-properties" of interfaces that have not yet been fully investigated. We investigated properties such intermolecular residue-residue contacts (already successfully applied to the prediction of binding affinities) and interaction energies (electrostatic, Van der Waals and desolvation). By using the XtalMany and BioMany interface datasets, we show that interfacial residue contacts, classified as a function of their physico-chemical properties, can distinguish between biological and crystallographic interfaces. The energetic terms show, on average, higher values for crystal interfaces, reflecting a less stable interface due to crystal packing compared to biological interfaces. By using a variety of machine learning approaches, we trained a new interface classification predictor based on contacts and interaction energetic features. Our predictor reaches an accuracy in classifying biological vs crystal interfaces of 0.92, compared to 0.88 for EPPIC (one of the main state-of-the-art classifiers reporting same performance as PISA). CONCLUSION: In this work we have gained insights into the nature of intermolecular contacts and energetics terms distinguishing biological from crystallographic interfaces. Our findings might have a broader applicability in structural biology, for example for the identification of near native poses in docking. We implemented our classification approach into an easy-to-use and fast software, freely available to the scientific community from http://github.com/haddocking/interface-classifier
    corecore